Constrained Spline Regression in the Presence of Correlated Errors
نویسندگان
چکیده
Extracting the trend from the pattern of observations is always difficult, especially when the trend is obscured by correlated errors. Often, prior knowledge of the trend does not include a parametric family, and instead the valid assumption are vague, such as “smooth” or “monotone increasing.” Incorrectly specifying the trend as some simple parametric form can lead to overestimation of the correlation. The proposed method uses spline regression with shape constraints for estimation and inference in the presence of correlated errors. Standard criteria for selection of penalty parameter, such as Akaike information criterion (AIC), cross-validation and generalized cross-validation, have been shown to behave badly when the errors are correlated and in the absence of shape constraints. In this article, correlation structure and penalty parameter are selected simultaneously using a correlation-adjusted AIC. The asymptotic properties of unpenalized spline regression in the presence of correlation are investigated. It is proved that even if the estimation of the correlation is inconsistent, the corresponding projection estimation of the regression function can still be consistent and have the optimal asymptotic rate. The constrained spline fit attains the convergence rate of unconstrained spline fit in the presence of correlated observations. Simulation results show that the constrained estimator typically behaves better than the unconstrained version if the true trend satisfies the constraints.
منابع مشابه
Wavelet Threshold Estimator of Semiparametric Regression Function with Correlated Errors
Wavelet analysis is one of the useful techniques in mathematics which is used much in statistics science recently. In this paper, in addition to introduce the wavelet transformation, the wavelet threshold estimation of semiparametric regression model with correlated errors with having Gaussian distribution is determined and the convergence ratio of estimator computed. To evaluate the wavelet th...
متن کاملA Comparison of Thin Plate and Spherical Splines with Multiple Regression
Thin plate and spherical splines are nonparametric methods suitable for spatial data analysis. Thin plate splines acquire efficient practical and high precision solutions in spatial interpolations. Two components in the model fitting is considered: spatial deviations of data and the model roughness. On the other hand, in parametric regression, the relationship between explanatory and response v...
متن کاملNonparametric Regression with Correlated Errors
Nonparametric regression techniques are often sensitive to the presence of correlation in the errors. The practical consequences of this sensitivity are explained, including the breakdown of several popular data-driven smoothing parameter selection methods. We review the existing literature in kernel regression, smoothing splines and wavelet regression under correlation, both for short-range an...
متن کاملUse of Two Smoothing Parameters in Penalized Spline Estimator for Bi-variate Predictor Non-parametric Regression Model
Penalized spline criteria involve the function of goodness of fit and penalty, which in the penalty function contains smoothing parameters. It serves to control the smoothness of the curve that works simultaneously with point knots and spline degree. The regression function with two predictors in the non-parametric model will have two different non-parametric regression functions. Therefore, we...
متن کاملTime integration of rectangular membrane free vibration using spline-based differential quadrature
In this paper, numerical spline-based differential quadrature is presented for solving the boundary and initial value problems, and its application is used to solve the fixed rectangular membrane vibration equation. For the time integration of the problem, the Runge–Kutta and spline-based differential quadrature methods have been applied. The Runge–Kutta method was unstable for solving the prob...
متن کامل